
This paper is included in the
Proceedings of the 18th USENIX Symposium on

Networked Systems Design and Implementation.
April 12–14, 2021

978-1-939133-21-2

Open access to the Proceedings of the
18th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Caerus: Nimble Task Scheduling for
Serverless Analytics

Hong Zhang, UC Berkeley; Yupeng Tang and Anurag Khandelwal, Yale University;
Jingrong Chen, Duke University; Ion Stoica, UC Berkeley

https://www.usenix.org/conference/nsdi21/presentation/zhang-hong

Caerus: NIMBLE Task Scheduling for Serverless Analytics
Hong Zhang
UC Berkeley

Yupeng Tang
Yale University

Anurag Khandelwal
Yale University

Jingrong Chen
Duke University

Ion Stoica
UC Berkeley

Abstract
Serverless platforms facilitate transparent resource elasticity
and fine-grained billing, making them an attractive choice
for data analytics. We find that while server-centric analytics
frameworks typically optimize for job completion time (JCT),
resource utilization and isolation via inter-job scheduling poli-
cies, serverless analytics requires optimizing for JCT and cost
of execution instead, introducing a new scheduling problem.
We present Caerus, a task scheduler for serverless analytics
frameworks that employs a fine-grained NIMBLE scheduling
algorithm to solve this problem. NIMBLE efficiently pipelines
task executions within a job, minimizing execution cost while
being Pareto-optimal between cost and JCT for arbitrary an-
alytics jobs. To this end, NIMBLE models a wide range of
execution parameters — pipelineable and non-piplineable data
dependencies, data generation, consumption and processing
rates, etc. — to determine the ideal task launch times. Our eval-
uation results show that in practice, Caerus is able to achieve
both optimal cost and JCT for queries across a wide range of
analytics workloads.

1 Introduction
Serverless platforms [1–3] fulfill the promise of transparent
resource elasticity in the cloud [4–6]. Under the Function
as a Service (FaaS) serverless model, users decompose their
applications into short-lived stateless functions that read and
write data from an external storage service. The sub-second
startup latencies and virtually unlimited parallelism in FaaS
platforms permit fine-grained compute elasticity, while sub-
second billing granularities afford cost-efficiency.

These benefits have driven many recent efforts to port data
analytics applications to serverless platforms [7–18]. Ana-
lytics jobs typically comprise multiple stages of execution
organized as directed acyclic graphs (DAGs) based on their
data dependencies, with each stage comprising several par-
allel tasks. While traditional server-centric deployments use
clusters provisioned with a fixed pool of storage and compute
resources to execute these jobs, serverless deployments imple-
ment tasks as serverless functions [7–13] that exchange state
via external storage [14, 15]. Since analytics workloads typ-
ically have widely varying resource needs over time, both
across and during job lifetimes [12, 14], server-centric de-
ployments can frequently suffer from resource under- or over-
provisioning [12, 14, 19, 20], leading to resource wastage or
performance degradation, respectively. In contrast, serverless
compute [1–3] and storage [15, 21–24] platforms facilitate
fine-grained scaling of resources to match application needs,
making them an attractive choice for data analytics [7–18].

We find that the shift from server-centric to serverless an-
alytics results in a shift in goals for schedulers in analytics
frameworks. Since the FaaS platforms manage allocation of
compute resources across jobs, schedulers need no longer be
concerned with the conventional goals of maximizing clus-
ter resource-utilization and enforcing fairness across jobs via
inter-job scheduling policies [25–28]. Instead, under the FaaS
billing model, schedulers must now consider the cost of each
job’s execution, which is proportional to the aggregated run-
times across its component tasks. This highlights the need for
inter-task scheduling policies for serverless analytics jobs to
minimize both execution cost and job completion time (JCT).

Unfortunately, task-level scheduling policies employed by
server-centric analytics today expose a hard-tradeoff between
cost and JCT in serverless platforms. Figure 1 shows a sim-
ple map-reduce job where reduce tasks consume and aggre-
gate data generated by map tasks. Traditional analytics frame-
works [29–32] typically employ one of the two following
extremes: (1) a lazy approach that launches a reduce task only
when all the map tasks have finished (Figure 1 (a)), and (2)
an eager approach that launches a reduce task as soon as any
map task produces data for it to consume (Figure 1 (b)).

Intuitively, the lazy approach is cost-efficient: since reduce
tasks waste no time waiting for upstream map tasks to gen-
erate data, individual task durations (which governs cost in
serverless settings) is always minimized. However, its JCT can
be far from optimal since there is no pipelining of map and
reduce task executions. The eager approach, on the other hand,
is JCT-efficient since it maximally pipelines the execution of
map and reduce tasks. However, its can introduce a much
higher cost: reduce tasks can waste a lot of time waiting for
upstream map tasks to generate data, which increases reduce
task durations and, consequently, execution cost. We discuss
this example further in §2, but note for now that this trade-off
between execution cost and JCT is even more extreme for
multi-stage jobs seen in production workloads [27, 28].

Note that in an ideal solution (Figure 1 (c)), a task would be
launched late enough to minimize task durations (and there-
fore, execution cost), but early enough to minimize JCT. In
this work, we propose a NIMBLE scheduling algorithm that
builds on this intuition: at its core, NIMBLE scheduling com-
bines the cost-efficiency of lazy and JCT-efficiency of eager ap-
proaches and breaks the tradeoff between them (Figure 1 (d)),
by scheduling tasks to run at just the right time.

Designing such an optimal scheduling strategy, however,
is non-trivial. First, a precise description of the pipelinablity
across different job stages is crucial to determine the optimal
schedule — task-level DAGs typically used for representing

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 653

Map tasks (M1~M3)

Stage barrier
12

16
12

12
16

12
1
2
3

1
5

12

1
2

3

(a) Lazy (b) Eager

M1
M2
M3

R1
R2
R3

M1
M2
M3
R1
R2
R3

Under-utilized resourcesReduce tasks (R1-R3)Can be pipelined with map
Cannot be pipelined with map

time time

1 1
5 2

12 3

R1
R2

R3

time
(c) Optimal

12
16

12

M1
M2
M3 Optimal

(64, 19)

Cost (total duration)

Lazy
(64, 31)

Eager
(94, 19)

Jo
b

co
m

pl
et

io
n

tim
e

(d) Cost-runtime trade-off
Figure 1: (a, b) Lazy and eager approaches expose a hard trade-off between JCT and cost; numbers within bars correspond to task runtimes. (c,
d) Fine-grained scheduling in serverless infrastructures provide opportunities to break this tradeoff with optimal scheduling strategies. The JCT
is simply the finish time of the last reduce task, while its cost is calculated as the aggregated durations of all its component tasks.

job executions in existing job schedulers are insufficient. Even
for the simple map-reduce example in Figure 1, while parts of
reduce task execution can be pipelined with map tasks (orange
bars), some parts can only start after map stage finishes (black
bars), e.g., when map output must be aggregated at the reduce
task before further processing. To this end, we develop a fine-
grained step dependency model that captures data dependency
and pipelinablity information at sub-task granularity (§3).

Second, in contrast to the map-reduce example above, tasks
in general analytics jobs can have significantly more com-
plex pipeline dependencies. Specifically, a task can consume
data from multiple upstream tasks, and tasks across the job’s
execution DAG may have cascading dependencies. Coupled
with time-varying data generation and consumption rates, this
makes identifying task launch times for JCT- and cost-efficient
job execution challenging. In fact, our analysis shows that
even with perfect models for all of the above constraints, it is
impossible for a task scheduling algorithm to always be able
to optimize both execution cost and JCT for arbitrary analytics
jobs. Fortunately, we show it is possible for a scheduling algo-
rithm to be cost optimal, while being Pareto-optimal between
execution cost and JCT. We realize this in NIMBLE, a schedul-
ing algorithm that carefully models data produce and consume
rates across stages, computes launch times for tasks across
them based on both inter- and intra-task data dependencies,
and schedules tasks greedily across dependent stages (§4).

Finally, we incorporate the NIMBLE algorithm into Caerus,
a new fine-grained task-level scheduler for serverless analytics
frameworks (§5). Caerus translates the theory developed for
NIMBLE to practice, by extracting step dependencies from
user queries via a step annotation API, and estimating NIMBLE
algorithm inputs using a combination of job execution histories
and information profiled at runtime. Caerus easily integrates
with existing serverless analytics frameworks [11, 12, 14] —
we implement Caerus in a prototype serverless SQL engine
built atop Locus [14], and evaluate its performance on AWS
Lambda for a wide range of analytics workloads including
TeraSort, TPC-DS and Big-Data Benchmark (§6). Our results
show that in practice, Caerus optimizes both cost and JCT,
outperforming the lazy approach by 1.08–2.2× in JCT, and
eager approach by 1.21–1.57× in cost across these workloads.

In summary, we make three main contributions:

• Formulation of a new task-level scheduling problem for

serverless analytics to minimize execution cost and JCT.
We show that schedulers used in server-centric frameworks
expose a hard tradeoff between cost and JCT (§2).

• Design of a new NIMBLE scheduling algorithm, that
launches each task in a job at just the right time to optimize
both cost and JCT. NIMBLE employs a new step model to
capture sub-task level pipelinablity and data dependencies,
and guarantees cost optimality while being Pareto-optimal
between cost and JCT for any analytics job (§4).

• Design, implementation and evaluation of Caerus, a fine-
grained task-level scheduler for serverless analytics frame-
works that enables NIMBLE scheduling in practice (§5, §6).

2 Motivation
In this section, we provide a brief background on server-centric
and serverless analytics (§2.1). We then describe how server-
less analytics introduces a new task scheduling problem (§2.2)
and new opportunities to address it (§2.3).

2.1 Background
Server-centric Analytics. Traditional server-centric deploy-
ments for data analytics [30, 31, 33–35] operate atop a fixed
pool of compute and storage resources, e.g., clusters of pro-
visioned servers or pools of provisioned virtual machines
(VMs)1. Consequently, such deployments employ a cluster-
wide job scheduler to efficiently share the fixed resource-pool
among multiple jobs with three key goals: minimizing job run-
time, maximizing resource utilization and ensuring resource
isolation (or fairness) across jobs. Given the resource demands
of each job, the scheduler achieves all or a subset of goals via
inter-job (i.e., job-granularity) scheduling policies [25–28].

Within a job, the execution is broken down into a DAG
of stages, each comprising multiple parallel tasks (see Fig-
ure 1 for an example). A task scheduler launches tasks across
the compute resources allocated to the job. Tasks in a stage
read their initial input from and write their final output to
persistent storage (e.g., HDFS [37]), while data exchange be-
tween consecutive stages occurs over the network (e.g., shuffle,
broadcast, etc.). Existing frameworks typically apply one of
two popular approaches to decide when to launch tasks: (i)
lazy (e.g., Spark [30]), which launches a task only when all

1One can add/remove VMs to scale VM clouds, but at coarse time granu-
larities, e.g., resizing an AWS EMR cluster takes ∼ 6−45 minutes [36].

654 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

tasks in upstream stages have completed, and (ii) eager (e.g.,
MapReduce Online [29]), which launches a task as soon as
any output from its upstream stages is ready.

Serverless Analytics. In serverless platforms, users no longer
provision or manage resources: this is the cloud provider’s
responsibility. Users simply pay for resources they use. Server-
less compute platforms [1–3] allocate and charge for compute
resources at function invocation granularity: invoking more
functions permits scaling up at a higher cost, and vice versa.

Existing approaches to serverless analytics deploy tasks
within a stage as serverless function invocations. Since cloud
providers disallow direct communications between serverless
functions [7, 11, 14], data is exchanged between functions via
external storage [8, 14, 15]. A job is charged for both func-
tion execution and external storage, with the former typically
dominating the cost2. With sub-second granularity billing for
serverless functions, the job execution cost is proportional to
the cumulative runtimes across all tasks of the job.

2.2 Serverless Scheduling: A New Problem
Since the cloud provider is responsible for resource manage-
ment in serverless platforms, user goals in serverless analytics
are different from server-centric deployments. In particular,
while minimizing JCT is still a primary goal, metrics like re-
source utilization and isolation are now the onus of the cloud
provider. Instead, the user must now optimize the cost of each
job’s execution, which is proportional to the cumulative task
runtime as outlined in §2.1. This shift in goals exposes a new
task-level scheduling problem for serverless analytics:

Problem Statement: Given the execution plan for an an-
alytics job comprising tasks with arbitrary dependencies,
can we find a task-level schedule that optimizes for both job
execution cost and JCT on a serverless platform?

Limitations of existing approaches. As we saw in §1, the ex-
isting server-centric lazy and eager task scheduling approaches,
when applied for serverless analytics, expose a hard tradeoff
between cost and JCT. Recall the job execution example in
Figure 1, which comprises a map and a reduce stage, each with
three tasks — each bar represents the execution of one task
over time (numbers in bars show task runtimes).

The lazy approach (Figure 1 (a)) is cost-optimal in the
serverless model, with a cost of 64 units3 — starting reduce
tasks any later would not affect their runtime (and therefore,
cost), while starting them sooner can cause them to stall for
more data to be generated by upstream map tasks, increasing
cost. However, the lazy approach also leads to high JCT (31
units), since it does not pipeline the execution of map and
reduce tasks at all. Similarly, eager scheduling (Figure 1 (b)) is
JCT-optimal (19 units) since the first part of reduce execution

2Cost of AWS Lambda execution is ∼$0.20/hour [38], while Amazon S3
storage is ∼$0.02/GB/month [39], with no data transfer cost between them.

3The cost is computed as the cumulative sum of the runtimes of the tasks
in the job, and assuming unit cost per unit runtime.

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5
DAG:

(A JOIN B) JOIN C)Optimal Schedule

Stage 1 (map)
Generate Table A

Stage 2 (map)
Generate Table B

Stage 3 (join)
A JOIN B

Stage 4 (map)
Generate Table C

Stage 5 (join)
(A JOIN B) JOIN C

Figure 2: Optimal schedule (left) and execution DAG (right) for
a multi-stage job. See §2.3 for details.

(orange bar) can be completely pipelined with the map stage.
However, its cost is significantly higher (94 units), since reduce
tasks often wait for data to be generated by upstream map tasks,
increasing their runtime, and therefore, cost.

This tradeoff can be much more severe for multi-stage jobs.
Production traces from Microsoft [27, 28] show that jobs in
their workloads have 13 and 121 stages at 50th and 95th per-
centiles, making it likely for them to have far more opportu-
nities for pipelining tasks across stages. Ignoring these op-
portunities (e.g., following the lazy approach) would lead to
JCTs that are significantly longer than optimal. On the other
hand, jobs can also have heavy skew in task runtimes [40–42]
— 10% of tasks take more than 10× the median task dura-
tion in Microsoft’s workloads [40]. Starting tasks across all
stages early to maximize pipelining (e.g., following the eager
approach) would force most downstream tasks to stall due to
slower upstream tasks, significantly increasing execution cost.

2.3 Opportunities & Challenges
New opportunities in serverless scheduling. Serverless
frameworks provide new opportunities to break the hard trade-
off between cost and JCT exposed by lazy and eager solutions
— on-demand invocation of functions at fine-grained timescales
permits the design of fine-grained task-level schedulers. Fig-
ure 1 (c) shows the optimal schedule for the job in Figure 1 —
with fine-grained scheduling, it is possible to achieve such a
schedule by launching each task at just the right time, mini-
mizing both cost (64 units) and JCT (19 units) (Figure 1 (d)).

Moreover, these gains are likely to be even more significant
in production workloads comprising multi-stage jobs with
complex stage dependencies. For example, Figure 2 shows a
multi-stage SQL job which performs join across three tables
(A, B and C) using shuffle hash join (SHJ) algorithm [43]. The
figure shows the job’s execution plan as a DAG of stages on the
right, and the corresponding optimal task schedule on the left.
The optimal schedule can efficiently pipeline all the five stages
in this multi-stage join example, resulting in much higher gains
in JCT and cost than for simple two stages map-reduce jobs.

Challenges. Figure 2 also indicates that calculating the opti-
mal launch time for each task is non-trivial due to a number of
reasons. First, a task may include multiple parts, where each
part may or may not be pipelineable with some part of one of
its upstream stages. In Figure 2 (left), Stage 3 is composed of
two parts. The first part, which reads Table B from Stage 2

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 655

and uses it to build a hash table, can be pipelined with Stage 2
execution. The second part, which reads Table A from Stage
1 and performs online join with the hash table constructed in
the first part, can pipelined with Stage 1 execution. Second,
the runtime of one task depends on the processing rate of all
tasks in its previous stage, and these dependencies cascade to
upstream stages. In Figure 2, the execution of Stage 5 depends
on Stage 3 and Stage 4, and Stage 4 is further determined
by Stage 1 and Stage 2. As such, the first challenge lies in
identifying parts of the execution that can be pipelined, and
the dependencies between such pipelinable components — we
address this in §3. The second challenge lies in using this
information to determine ideal launch times for tasks in jobs
with complex DAGs, which we address in §4.

Why serverless? Intuitively, the fine-grained task-level
scheduling shown in Figures 1 (c) and 2 can also be extended
to server-centric settings to optimize average JCT. Moreover,
the reduction in per-job resource usage (i.e., cost in server-
less settings) enabled by this approach may improve resource
utilization via bin-packing more jobs onto the same number
of servers. However, while cost improvements in serverless
analytics are obvious, achieving improvements in resource
utilizations with theoretical guarantees in server-centric de-
ployments is not straightforward, since it is unclear how the
resources saved by delaying task launch times can be utilized
by other jobs. Specifically, the optimal in Figures 1 (c) and 2
is likely to create staggered task launch times across stages to
optimize each individual job, and they may not be optimal for
bin-packing across jobs. Thus, while the clear decoupling from
inter-job resource allocation ensures cost and JCT-optimality,
extending it to server-centric settings for optimal JCT and re-
source utilization requires a careful co-design of inter- and
intra-job scheduling. We leave this study to future work.

3 Step Dependency Model
As discussed above, a key challenge in identifying ideal task
launch times for a job is modeling pipelineable and non-
pipelineable dependencies across tasks. In this section, we
discuss how we model such dependencies and the flow of data
across them, using a new step dependency model. We employ
this model to design our NIMBLE scheduling algorithm in §4.

Stage dependencies in traditional analytics. As outlined in
§2.1, job execution in traditional analytics frameworks [27,28,
30, 34] is represented as a DAG, where nodes are execution
stages (comprised of multiple parallel tasks) and edges denote
data dependencies between them. Figure 3 (a, left) shows
the DAG for the map-reduce example from Figure 1, while
Figure 3 (b, left) shows a SQL query that performs shuffle
hash join (SHJ) on tables generated by two map stages.

Unfortunately, the stage model is not fine-grained enough
to capture the information required to determine the ideal
launch times for tasks in serverless analytics jobs. To see why,

Pipelineable dependencyNon-pipelineable dependency

A two-stage map-reduce job

SQL query A JOIN B (SHJ)

map

reduce r.s1 r.s2

m.s1

reduce

m1.s1 m2.s1

j.s1 j.s2 join

map1 map2

join

Stage model: Step model:

Pipeline-breaker

Figure 3: Stage vs. step dependency model for (a) map-reduce job,
and (b) SQL query that joins two tables A and B after applying a
map function on each. In the step model, red arrows show depen-
dencies across steps that can be pipelined, while black arrows show
dependencies that prevent pipelining. See §3 for details.

consider the map-reduce example from Figure 3 (a, right)4,
where the reduce stage (and therefore, all tasks in the stage)
has two distinct parts, shown as orange and black boxes. While
the first part (r.s1), where reduce tasks read map data, can be
pipelined with map execution (m.s1), the second part (r.s2),
where the reduce tasks aggregate and output data, cannot —
since final aggregation can only occur after all map data has
been read. Clearly, stage dependencies, shown in Figure 3 (a,
left), cannot capture such fine-grained information regarding
pipelineable and non-pipelineable components of task, nor
capture the data dependencies between them. This information
is crucial in determining the optimal start time for reduce tasks
— early enough to maximally overlap r.s1 with m.s1, but not
too early, since pipelining r.s2 with m.s1 is impossible.

Modeling pipeline dependencies using steps. To precisely
model how stages can be pipelined, we refine the stage model
into a fine-grained step model to precisely describe how job ex-
ecution can be pipelined across stages. In our model, the stages
are decomposed into one or more steps, which are separated
by pipeline breakers within the stage — operators that pro-
duce their first output only after all input have been processed.
Pipeline breakers create barriers in execution, demarcating
stretches of execution that cannot be pipelined with each other.
As such, steps within a stage must be executed sequentially,
since pipeline breakers prevent subsequent steps from starting
before its upstream step finishes. Across stages, however, steps
with data dependencies between them can be pipelined. As a
concrete example, consider the step model for the map-reduce
job in Figure 3 (a, right) — m.s1 corresponds to the single
step in map stage, while r.s1 and r.s2 correspond to two
steps in the reduce stage, with a pipeline breaker separating
them. The step r.s1 which consumes data can be pipelined
with the upstream step m.s1 in the map stage that generates
the data. We refer to such cross-stage pipelineable step pairs
(e.g., (m.s1, r.s1)) as parent-child step pairs. Note that the
while above description focuses on the decomposition of a
stage into steps, each task within the stage shares the same

4This is the same example as the one depicted in Figure 1.

656 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

step-level decomposition — we will use the term step to refer
to parts of a stage or its tasks interchangeably and clarify the
distinction whenever needed.

Figure 3 (b) contrasts the step and stage DAGs for a simple
join query. Each of the two map stages comprise a single step,
while the hash join stage is divided into two steps. The step
j.s1 reads the left table (Table A generated by m1.s1) to
create a hash table of unique entries, while step j.s2 reads
the right table (Table B generated by m2.s1), joins it with
the hash table and writes the output. Each of the two steps
can be pipelined with their parent steps (the two map stages),
but these two steps have to be executed sequentially within
the join stage, since the hash table must be created before the
second join step can proceed (pipeline-breaker).

We discuss the details of how the step dependencies can be
extracted from user code in §5, but note for now that this model
is expressive enough to capture the pipeline dependencies
across a wide range of evaluated analytics applications (§6).

Modeling flow of data across steps. We now describe param-
eters that are used to model the flow of data across steps in the
step dependency model. While we discuss how these are esti-
mated in §5, we note for now that these parameters are used as
inputs to the NIMBLE algorithm. Consider a stage comprising
n steps, s1-sn, some of which may have a parent step, while
some may not. If step si receives data from a parent step, then
(1) parent produce rate (rp) is the aggregated data output rate
across all tasks of its parent step (referred to as produce rate
for brevity); and (2) full consume rate (rc) is the rate at which
data can be read and processed by step si when there is suffi-
cient data for it to consume. If step si does not have a parent
step, then its execution duration dsi is independent of when
the task is launched, allowing us to model dsi as a constant.

Since the produce rate is determined by the aggregate data
output rate across all upstream tasks, each with potentially dif-
ferent start and end times, we model rp as an arbitrary function
of time t. Note that the cumulative area under the rp(t) curve
corresponds to the total input data for the step under consider-
ation; we denote this as P. The full consume rate, on the other
hand, is tied to how fast the step can read and process data,
and we found it to be stable throughout a the step’s execution
in our evaluation (§6), allowing us to model rc as a constant.
Note that the parent step may not always produce data as fast
as it can be consumed, i.e., the actual consume rate (rac) for
the step may be lower than rc.

4 NIMBLE Scheduling
Armed with the step dependency model, we are now ready to
describe our NIMBLE scheduling algorithm. NIMBLE builds
on the intuition outlined in §2.3, and combines the cost-
optimality of lazy and JCT-optimality of eager approaches
to schedule tasks in an analytics job to run at just the right
time. We first describe NIMBLE scheduling for a simple two-
stage map-reduce job (§4.1), and then extend it to general
analytics jobs with arbitrary execution DAGs (§4.2).

3
2

1

1 2 3 4 5 time

𝑡

1 2 3 time

𝑡

𝒕𝒆,𝒔𝟏
∗

0

R
at

e

R
at

e𝒅𝒔𝟏
∗

3
2

1

𝑟
 : produce rate 𝑟

 : full consume rate 𝑟
 : actual consume rate

0

1
2

1
2
33

1 2 3 time

𝑡

R
at

e

3
2

1

0

1
2
3

𝒅𝒔𝟏
∗

𝒕𝒆,𝒔𝟏
∗

(a) Lazy (b) Eager (c) NIMBLE
𝑻𝒔

∗

Figure 4: Optimal launch time for a two-stage map-reduce job.
(a) The total volume of data to be consumed by the reduce step r.s1
(P = 6) is the area under the produce rate (rp(t)) curve. The lazy
approach allows us to compute the optimal task runtime (d∗s1) as
P/rc = 2. (b) The optimal task finish time (t∗e,s1 = 3) is obtained by
emulating the eager approach, where the finish time is the maximum
of P/rc (= 2) and the map finish time tm (= 3). (c) The optimal
launch time (T ∗s = 1) is computed as the difference of the optimal
finish time and optimal duration. See §4.1 for details.

4.1 NIMBLE for Two-stage Map-Reduce
Consider the step model for the simple two-stage map-reduce
job in Figure 3 (a). Note that the JCT of the job is the same as
the finish time of the last reducer, and the total cost of the job is
proportional to the aggregated duration of all map and reduce
tasks. As such, optimizing for the finish time and execution
duration of individual tasks also ensures optimality for JCT.

Since map tasks do not have any upstream dependencies,
their execution duration is independent of their launch times,
and only depends on how fast they can read data from per-
sistent storage and process it. Meanwhile, optimal finish time
for map tasks can be achieved by launching them as early
as possible (at t = 0). On the other hand, due to the parent-
child step dependency between the map and reduce tasks (Fig-
ure 3 (top)), the data consumption in r.s1 step of reduce tasks
can be pipelined with the data generation in step m.s1 of map
tasks for minimizing reduce task finish times and execution
durations. In particular, a reduce task should be launched early
enough to ensure r.s1 overlaps with m.s1 as much as possi-
ble to minimize finish time, but late enough to ensure that it
can always consume data at full rate throughout its execution
without stalling, to optimize cost. Our NIMBLE scheduling
approach can always find such a “perfect” launch time using
the following three steps (Figure 4):

Step 1: Calculate optimal task duration D∗. Since step
r.s2 can only start after r.s1 finishes, the optimal duration
D∗ of a reduce task is d∗s1+ d∗s2, where d∗s1 and d∗s2 are the
optimal durations of steps r.s1 and r.s2 respectively. Note
that since r.s2 does not have a parent step, its duration is
independent of when the reduce task is scheduled. As such,
the optimal duration D∗ depends only on step r.s1.

Recall from §2.2 that the lazy approach always ensures
optimal duration for reduce tasks — since the entire input is
available before the reducer starts, r.s1 can always consume
the input data at consume rate rc without ever stalling. As such,
d∗s1 is simply P/rc, where P is the total amount of input data
for r.s1. In Figure 4 (a), P = 6 is the area under the curve

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 657

rp(t), which gives d∗s1 = 3.

Step 2: Calculate optimal finish time T ∗e . The optimal finish
time T ∗e for a reduce task is simply t∗e,s1+ d∗s2 where t∗e,s1 is
the optimal finish time of r.s1. Again, since duration d∗s2 is
independent of when the task is launched, T ∗e depends only on
when step r.s1 finishes.

We leverage the eager strategy of starting the reduce task at
t = 0 to compute the optimal step finish time t∗e,s1 — intuitively,
starting the task any sooner cannot reduce the step finish time
any further. Note that since all the map tasks are started at t = 0,
the produce rate rp is non-increasing in time. Consequently,
if the full consume rate rc of the reduce task is lower than the
average produce rate, then the finish time of the step will be
bottlenecked by rc, i.e., t∗e,s1 = P/rc. On the other hand, if rc
is higher than the average produce rate, the bottleneck shifts
to rp, and the reduce task can only finish when the map tasks
finish generating data at time tm. Figure 4 (b) shows the latter
scenario, where rc = 3 is higher than the average produce rate
(= 2), and therefore t∗e,s1 = tm = 3.

Step 3: Calculate optimal launch time T ∗s . We find that
launching the reduce task at T ∗s = T ∗e −D∗, where D∗ and
T ∗e are computed via the lazy (Step 1) and eager (Step 2)
approaches, respectively, ensure that the task is optimal in
both execution duration and finish time. This is shown in Fig-
ure 4 (c), where starting the reduce task at T ∗s = 3−2 = 1 en-
sures optimal duration (D∗= 2), as well as finish time (T ∗e = 3).
At first glance, this may seem obvious, since D∗ and T ∗e al-
ready correspond to optimal task duration and finish time,
respectively. But we note that since D∗ and T ∗e were computed
for two separate approaches, it is not obvious if an approach
that starts the task at T ∗s = T ∗e −D∗ will always ensure the
task takes exactly D∗ time to finish. Fortunately, for two-stage
map-reduce jobs, we have the following theorem:
Theorem 4.1 For a reduce task, we can always achieve both
optimal execution duration and finish time by launching it at
time T ∗s = T ∗e −D∗, where T ∗e is the optimal finish time and D∗

is the optimal duration computed using Steps 1 and 2 above.

Proof Since the duration of step r.s2 is independent of when
the reduce task is scheduled, we only need to prove the opti-
mality of finish time and duration for step r.s1.

We first show that we can always achieve optimal finish
time t∗e,s1 if we launch the reduce task at time T ∗s = T ∗e −D∗.
We prove this by contradiction: assume that a reduce task that
is started at T ∗s does not finish executing its first step r.s1 at
t∗e,s1. This must be because at some time point ∈ [T ∗s , t

∗
e,s1], the

task was unable to consume data at full consume rate rc. We
denote the last time instant where this was true as t ′. Note that
the data produced until time t ′ (say, Pt≤t ′) must be less than
the data that can be consumed by time t ′ at full consume rate
rc, i.e., Pt≤t ′ < (t ′−T ∗s)× rc. Since the total amount of data
produced is P = d∗s1× rc, the data produced after t ′ must be
Pt>t ′ = P−Pt≤t ′ > (t∗e,s1− t ′)× rc, and the reduce task will
take more time than (t∗e,s1− t ′) to consume it (since it can

consume data at a rate no faster than rc).
Note that the data produced after t ′, Pt>t ′ , is independent of

the reduce task’s launch time. This implies that regardless of
how early the task is launched, no solution could have achieved
optimal finish time t∗e,s1 for the step r.s1. However, this con-
tradicts with the fact that the eager solution can achieve the
optimal finish time by launching the task at t = 0. Therefore,
our initial assumption must have been false: a reduce task that
is started at T ∗s does finish executing its first step r.s1 at t∗e,s1.

Proving T ∗s = T ∗e −D∗ results in optimal task duration is
then trivial: since step r.s1 finishes at t∗e,s1 with start time T ∗s ,
the corresponding duration T ∗s − t∗e,s1 will always be d∗s1. �

Note that the T ∗s for different reduce tasks may be different,
since the produce rate rp to different reduce tasks may vary
(e.g., due to data skew). Recall that the finish time of the job is
the same as the finish time of the last reduce task, and the total
cost of the job is proportional to the aggregated duration of all
tasks. As such, Theorem 4.1 shows that we can simultaneously
achieve both optimal cost and finish time for the entire job, as
long as each reduce task is optimal in duration and finish time,
i.e., is launched at T ∗s .

4.2 NIMBLE for General Analytics
We now extend our analysis to general analytics jobs. We first
outline the steps in computing the optimal launch time for
tasks in jobs with arbitrary execution DAGs, and then describe
how NIMBLE scheduling can be generalized to such DAGs.

4.2.1 Optimal launch time for individual tasks
General analytics jobs with arbitrary execution DAGs intro-
duce two main challenges in determining the optimal task
launch time as defined in §4.1. First, unlike two-stage map-
reduce jobs, the start times of a step’s parent steps need not
start at t = 0 and can be staggered in time, as shown in Fig-
ure 5 (a). This breaks our assumption of a nonincreasing rp(t)
from §4.1, and necessitates a more nuanced treatment of the
eager approach to compute the optimal task finish time.

Second, unlike two-stage map-reduce jobs, general analytics
jobs, a stage may contain multiple parent-child step pairs, e.g.,
the join stage in Figure 3 has two steps, and each step has a
parent step from a different map stage. For such dependencies,
we find that optimally overlapping each parent-child step pair
is insufficient to ensure optimal task duration and finish time.
Specifically, the optimal task launch time depends not only on
the inter-stage dependency between parent-child step pairs, but
also on the intra-stage dependency between steps in the same
stage. Figure 5 (b, left) shows a join example where the optimal
launch for each step in the task is computed independently.
Although each child step is optimally pipelined with its parent,
the gap between their execution corresponds to time where
no useful work is done, resulting in sub-optimal task duration
and, therefore, cost of execution. Figure 5 (b, right) shows how
this can be avoided by deferring the start time of the first step.

We exploit the above insights to extend NIMBLE scheduling
approach from §4.1 to general analytics jobs. We consider the

658 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

map2:

 join:

optimize each step separately optimal schedule
1 2 3 4 50 1 2 3 4 50

map2:
map1:

j.s2j.s1 gap j.s2j.s1

(b) A task may have multiple pipelineable dependencies

2
2

4

1 2 3 4 5 time

Parent step executions

0

R
at

e

1
2

(a) Staggered start time of upstream tasks

3

𝑟𝑝: produce rate
𝑟𝑐: full consume rate
𝑟𝑎𝑐: actual consume rate

map1:

 join:

Figure 5: NIMBLE scheduling for general analytics (§4.2) (a) Unlike two-stage map-reduce, the produce rate for a task may not be
nonincreasing, since the parent step in different tasks can have different start times. (b) Unlike two-stage map-reduce, tasks may have multiple
pipelineable dependencies, which requires careful handling to ensure optimal task duration. See §4.2.1 for details.

general case where a task comprises n steps, s1-sn, and make
two assumptions to simplify our analysis: (i) each step in a
task has at most one parent step, and (ii) steps within a task are
executed sequentially in a fixed order. Both assumptions hold
for a wide range of analytics jobs, including the join example
above, and all of our evaluated workloads (§6). Similar to two-
stage map-reduce (§4.1), the optimal launch time T ∗s for a task
in the execution DAG is calculated in three steps:

Step 1: Calculate optimal task duration D∗. The optimal
task duration D∗ is simply the sum of individual optimal step
durations d∗si, 1 ≤ i ≤ n. As in §4.1, the duration for steps
without a parent is independent of task launch time, while the
optimal duration for steps with a parent is computed using
the lazy approach, i.e., P/rc for the corresponding step. In
Figure 5 (a), P = 8 and rc = 2, so d∗si = 4.

Step 2: Calculate optimal finish time T ∗e . Since T ∗e is bound
by the finish time of the last step sn, we first compute the opti-
mal finish time of a step as computed by the eager approach,
similar to §4.1. As noted earlier, however, unlike two-stage
map-reduce where the parent step across all the map tasks start
at time t = 0, the parent step across different tasks in a general
DAG may start and end at arbitrary times. This is depicted in
Figure 5 (a) where the parent step across two upstream tasks
start at time t = 2, while the third starts at t = 0. Consequently,
the produce rate is no longer non-increasing. As such, the
optimal step finish time (based on the eager approach) can
only be determined by tracking the actual consume rate rac
over time. In the example, rac is bound by rp (= 1) between
t = 0−2, lower than rp (= 3) and bound by rc (= 2) between
t = 2−4, and equals to rc (= 2) between t = 4−5 to clear the
surplus data generated between t = 2−4. As such, the finish
time yielded by the eager approach is 5.

In order to generalize the above example, we discretize time
into slots t1, t2, ..., tm, such that the produce rate is constant
within a time slot. We introduce a new function S(ti) to identify
time slots where the step accumulates surplus data, i.e., S(ti) =
0 if all the input data produced until ti has been consumed by
time ti, and 1 otherwise. It is easy to see that when there is
no surplus data (S(ti) = 0), the actual consume rate rac(ti)
is upper-bounded by the produce rate rp(ti). When there is
surplus data (S(ti) = 1), the actual consume rate increases to
the full consume rate (rac = rc) to clear the surplus. Formally,

rac(ti) =

{
min(rp(ti),rc) if S(ti) = 0
rc if S(ti) = 1

(1)

For each ti, we can calculate S(ti) based on S(ti−1), rac(ti−1)
and rp(ti−1), and rac(ti) based on Equation 1. The time slot tn
where the cumulative data consumed so far equals P, the total
input data for the step, corresponds to the optimal finish time;
we formally prove optimality in Appendix A.

Unlike the two-stage map-reduce job in §4.1, we have to
consider one more constraint — step si can only start after step
si-1 has finished, i.e., the finish time of step i is no less than
t∗e,si-1 +d∗si. Let the optimal step finish time for si as computed
above (which only considers its parent step) be t ′e,si, then the
actual optimal finish time of step i is:

t∗e,si =

{
max(t ′e,si, t

∗
e,si-1 +d∗si) if si has a parent

t∗e,si-1 +d∗si otherwise
(2)

We compute the optimal task finish time by iteratively calculat-
ing the optimal finish time for each step s1−sn. Figure 5 (b)
shows an example for this computation: the task finish time
equals the t ′e,s2 (= 5), since t∗e,s1+d∗s2 (= 1+2) is smaller.

Step 3: Calculate optimal launch time T ∗s . As in §4.1, the
optimal launch time is computed as T ∗s = T ∗e −D∗. Consider
the example in Figure 5 (b); the optimal launch time is calcu-
lated as T ∗s = T ∗e −D∗ (= 5−3) for the two steps. Compared
to Figure 5 (b, left), doing so automatically delays the first step
and removes the gap (Figure 5 (b, right)).

Indeed, Theorem 4.1 extends to general analytics jobs:
Theorem 4.2 For a task in an analytics job with an arbitrary
execution DAG, given the execution (produce rate) of all its
parent steps, we can always achieve both optimal execution
duration and finish time by launching it at T ∗s = T ∗e −D∗,
where T ∗e is the optimal finish time and D∗ is the optimal
duration computed using Steps 1 and 2 above.
We defer the formal proof to Appendix A, but note here that
it employs induction on the number of steps: we assume the
statement holds for a task with n−1 steps, and use Theorem 4.1
to show that it still holds on adding one more step.
4.2.2 Optimal schedule for the entire job
Algorithm 1 shows NIMBLE scheduling for the entire job
based on Theorem 4.2. Stages in the job are scheduled itera-
tively based on their dependencies: a stage is scheduled when
all of its parent stages in the execution DAG have been sched-
uled. For each task within a scheduled stage, we first calculate
the produce rate from its parent stages, and then calculate its
optimal launch time as described above.

Algorithm 1 ensures that each task achieves optimal dura-
tion and finish time given its parent execution (due to Theo-

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 659

Algorithm 1 NIMBLE scheduling for a job

Launch all stages with no parent stages.
U← Set of unscheduled stages
while U 6= /0 do

for each stage S ∈ U, whose parent stages are scheduled do
for each task in stage S do

Calculate rp for each using parent stage schedules
Calculate T ∗e and D∗ based on rp and rc of each step
Calculate T ∗s = T ∗e −D∗

1 2 3 4 50 1 2 3 4 50

Stage1:

Stage2:

Stage3:

(a) Schedule 1: NIMBLE (b) Schedule 2: optimize JCT

Stage1:

Stage2:

Stage3:

Figure 6: Example of a job that cannot achieve both (a) optimal
cost and (b) finish time simultaneously. Each stage comprises a
single task/step. Stage 2 has a produce rate of 1 and consume rate of
3. Stage 3 has a produce rate of 3 and consume rate of 1.

rem 4.2). However, it still leaves the question: does the algo-
rithm also ensure optimal finish time and cost for the entire
job? We find that the answer is in the affirmative for jobs with
DAGs of depth two, including the map-reduce and SQL jobs
in Fig 3. Intuitively, since the stages in the first level of the
DAG do not have parent steps, their optimal start time is t = 0.
As such, given the execution of the stages in the first level,
Theorem 4.2 ensures optimal duration and finish time for the
stages in the second level of the DAG.

Unfortunately, for general analytics jobs with arbitrary
DAGs, the answer is in the negative. In fact, we find that
for some jobs, it is impossible to find a schedule that achieves
both cost and JCT optimality. The key insight behind this
observation is that the launch time of a task affects not only
itself, but also its downstream tasks — the optimal launch time
for one task (Theorem 4.2) may negatively affect tasks in its
downstream. We illustrate this with the example in Figure 6,
that shows a job with three stages, each with only one step and
one task. Stage 2 has a produce rate of 1 and consume rate
of 3. Stage 3 has a produce rate of 3 and consume rate of 1.
The arrows denote parent-child step pairs. Figure 6 (a) shows
NIMBLE approach, which greedily optimizes the duration and
finish time from Stage 1-3 based on the produce rate of each
stage’s parent steps; the end-to-end execution time of the entire
job is 5, while its cost is 7. Figure 6 (b) shows an alternative
strategy, that launches tasks across all three stages (Stage 1-3)
at t = 0. This increases the duration of Stage 2 from 1 to 3,
and consequently, the cost of execution of the job from 7 to 9.
However, doing so also reduces the produce rate for Stage 3
to 1, allowing Stage 3 be completely pipelined with Stage 2.
As such, the finish time of the entire job reduces from 5 to 3.
Note that no schedule can achieve both a JCT of 3 and a cost
of 7, since optimal JCT can only be achieved if Stage 2 and 3
are started at t = 0, which ensures a sub-optimal cost.

Cost optimality & cost-JCT Pareto-optimality. Despite the

negative result above, NIMBLE scheduling efficiently navi-
gates the cost-JCT tradeoff for jobs with arbitrary DAGs:
Theorem 4.3 For a job with arbitrary DAG, NIMBLE schedul-
ing in Algorithm 1 is (1) optimal in cost; and (2) Pareto-
optimal between cost and JCT.
Proof We first consider cost-optimality: since Algorithm 1
ensures optimal execution duration for each task in a job (The-
orem 4.2), the aggregated duration across all tasks in the job,
and therefore, the job execution cost, is also optimal.

Since the cost is always optimal, for Pareto-optimality we
only need to show that no solution can further reduce job finish
time without also increasing its cost. Our proof builds on the
intuition developed for the example in Figure 6. First, we note
that delaying the start time beyond T ∗s for any task cannot
reduce its completion time; the only possibility to reduce JCT
is to pick a start time earlier than T ∗s . As per Theorem 4.2,
starting a task any sooner than T ∗s must increase its duration.
Moreover, doing so will not reduce the duration of any other
task, since they are already optimal. Thus, even if starting
the task before T ∗s did improve JCT, it would only do so by
increasing the aggregate duration across all tasks in the job,
and therefore, its cost. �

As an interesting aside, we note that for the example in
Figure 6, we face this hard tradeoff between JCT and cost
optimality because Stage 3 has a larger duration compared to
Stage 2. Instead, if Stage 3 had a duration of 0.5, starting Stage
2 any sooner than t = 2 (at higher cost) would not have made
stage 3 finish any faster. In practice, downstream stages often
have a shorter duration compared to the upstream stages, since
frequently used operators such as reduce, filter and join often
significantly reduce the output data volume to downstream
stages. In such cases, NIMBLE can achieve both optimal cost
and JCT simultaneously — evaluation results on a wide range
of analytics jobs in §6 validate this argument.

5 Design Details
In this section, we describe how we incorporate NIMBLE
scheduling into Caerus, a new fine-grained task-level scheduler
for serverless analytics frameworks. We first describe Caerus
design components and application workflow (§5.1), and then
describe its implementation details (§5.2).

5.1 Caerus System
We now describe Caerus system components and how they
fit together (Figure 7). Before describing these components,
we first briefly summarize the design employed by existing
serverless analytics frameworks.

Primer on serverless analytics frameworks. Recent propos-
als on serverless analytics frameworks [8, 12, 14] share similar
designs. Figure 7 depicts this design (adapted from [12]). The
framework takes as input a job execution plan (DAG) that
captures dependencies between stages and the number of tasks
within each stage. It uses this to generate code for the individ-
ual tasks, compiles it and packages it with necessary dependen-

660 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Step Model
Builder

Input Estimator

NIMBLE

Scheduling

Worker functions

Runtime
Profiler

Caerus Scheduler

Serverless Data Analytics Framework

Ex
ec

ut
io

n
pl

an
/

U
se

r c
od

e

Online info.
update

Function
Invocation

Compiler

Runtime

CodeGenerator

Figure 7: Caerus system components & workflow (§5.1).

cies. To execute a job, a scheduler launches tasks as serverless
functions and monitors their progress. Pywren [8, 14] is simi-
lar, but omits the code-generation and compilation steps and
directly takes task code and execution plan as input.

Caerus integrates with these analytics frameworks by simply
replacing their task-level scheduler, and taking over the task
launching and monitoring responsibilities. We next describe
the major components of Caerus scheduler (Figure 7) in detail.

The step model builder is responsible for extracting the
fine-grained step dependency model that NIMBLE schedul-
ing expects, either from the job’s execution plan or the user
code. If the input is user code (e.g., a Python function in Py-
Wren [8,14]), Caerus provides a step annotation API that users
can employ to specify the step information Caerus expects:

s = createStep() # Create a step object
s.start() # Notify system about step start
s.end() # Notify system about step end
s.addParent(stageID, stepID) # Specify parent step

If the query code is generated by a CodeGenerator based on
the execution plan (as in Starling [12]), the step dependencies
can be extracted during code generation. Most popular query
execution engines (e.g., SparkSQL) generate code based on
the Volcano [44] iterator or WholeStageCodegen [45] model,
which fuses operators as much as possible to maximize pipelin-
ing. As such, the generated code in such models is already
composed of blocks separated by pipeline breakers, where
each block corresponds exactly to a step in our step model.
Caerus augments the CodeGenerator to additionally generate
step-annotations at the start and end of blocks, along with step
dependencies, using the step annotation API outlined above.

Input estimator & runtime profiler. Recall from §3 that
NIMBLE scheduling relies on estimates of step produce rate
(rp) and consume rate (rc) for steps with parents, and duration
(d∗si) for steps without parents, to make scheduling decisions.
To facilitate accurate estimates, we leverage the observation
that task and job-level statistics can be accurately estimated by
tracking profiled information from prior job runs, since such
analytics jobs in production workloads tend to be recurring
in nature [26–28, 46, 47]. In particular, the input estimator
in Caerus is responsible for collecting information for prior
executions for each job (i.e., the job history) and maintaining
estimates for various rp, rc and d∗si values.

For higher accuracy, the input estimator continuously refines
its rp, rc and d∗si estimates based on realtime task progress. To
facilitate this, a runtime profiler (similar to [27, 40]) periodi-

cally profiles and reports such metadata to the input estimator.
Our runtime profiler is incorporated into the function runtime
in serverless frameworks [8] that is shared across all tasks.

Caerus workflow. For each job, the step-model builder first
extracts the step model from code generator or directly from
the annotated function code. The input estimator maintains
estimates of algorithm inputs (rp, rc and d∗si values) for each
step based on prior job runs. The NIMBLE scheduling module
then calculates launch time based on both the algorithm inputs
and step model, and launches each task at the calculated time.
Launched tasks periodically report their progress to the input
estimator via the runtime profiler, which is leveraged to refine
the input estimates for future runs.

Caerus scalability. Caerus’s scheduling performance scales
well with the number of available CPU cores due to two main
reasons. First, tasks within a stage have independent launch
times, which permits parallel calculation and launching. Sec-
ond, while the number of online update messages from run-
time profiler grows linearly with the number of tasks, it can be
served in parallel by partitioning input estimates for different
tasks across different CPU cores.

Fault-tolerance. Caerus handles task failures by restarting
them. For controller fault-tolerance, Caerus relies on tradi-
tional primary-backup mechanisms [30,48]. The backup main-
tains consistent copies of the job’s step model, launched and
queued tasks, and runtime profiled information from prior job
runs. During recovery, Caerus fetches this metadata from the
backup and resumes scheduling queued tasks using NIMBLE.

5.2 Caerus Implementation
Our Caerus prototype is implemented atop Pywren [8], a
serverless data analytics engine that runs on AWS Lambda [1].
We use Amazon S3 [21] for persistent data storage and
Jiffy [24] for intermediate data storage.

SQL analytics with Caerus. We implement a SQL query
execution framework atop Locus to highlight the benefit for
Caerus scheduling for SQL analytics workloads. We employ
Apache Spark’s query planner to generate the query plan from
the original SQL query, and then use Pandas to implement the
SQL operators. Pandas’ current implementation for SQL op-
erators (like JOIN and GROUPBY) employs the lazy approach,
e.g., for the join example in Figure 3 (bottom), Pandas would
only start the JOIN operation after all the data in both input
tables are ready. We therefore modify the operator implemen-
tations in Pandas to conform to the step dependency model
required by NIMBLE scheduling.

As a concrete example consider the implementation of the
SQL job in Figure 3 (bottom) in Caerus. For the first two
map stages, each task keeps reading input data from S3. After
reading each small chunk of input data, it performs the map
function, and partitions the output data into chunks based on
key hashes. To implement shuffle, we maintain a FIFO queue
for each join task in the intermediate storage. Once an output

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 661

chunk is ready, the map task pushes it to the corresponding
join task’s queue. Note that a join task receives data from two
shuffles (i.e., from map1 and map2). As such, each join task
has two receiver queues: queue A (for data from m1.s1) and
queue B (or data from m2.s1). After being launched, each
join task fetches data from queue A and builds the hash table
incrementally in step j.s1. Once the hash-table is built, the
step j.s2 fetches data from queue B, performs a join of the
fetched data with the data in the hash-table, and writes the
output to persistent storage.

Identifying pipeline-breakers. In Caerus, we implement all
commonly used SQL operators (e.g., FILTER, JOIN, SORT,
GROUP BY, aggregates, etc.), employ the widely-used Volcano
iterator model [44] to identify pipeline-breakers, and specify
them using the step annotation API. As such, Caerus can run
all TPC-DS and Big-data benchmark queries — we evaluate a
representative subset in §6.

Accurate parameter estimations. NIMBLE scheduling re-
lies on accurate estimation of various parameters (rp, rc, d∗si),
which can be complicated due unpredictable variations stem-
ming from a range of sources. Fortunately, we found a ma-
jority of these sources had little to no variation across AWS
Lambda executions, including (1) processing time for vari-
ous operators; (2) function launch times5; and (3) function
ingress/egress bandwidth to intermediate storage.

However, we did observe unpredictable performance varia-
tions for Amazon S3 reads and writes, particularly with larger
number of parallel tasks (≥ 100). To minimize parameter esti-
mation errors caused by these variations, we adopt a straggler
mitigation technique for S3 reads and writes similar to [12] —
Caerus tasks proactively establishes a new connection to S3
when a transfer takes longer than expected, and uses the re-
sponse from whichever connection performs the read or write
first. Moreover, we found larger S3 reads/writes to have un-
predictable durations, so we break them into multiple smaller
chunks. We show in §6 how these modifications ensure negligi-
ble estimations errors for a wide range of evaluated workloads.

6 Evaluation
We now evaluate Caerus implementation (§5.2) using three an-
alytics workloads: TeraSort benchmark (§6.1), TPC-DS Bench-
mark (§6.2) and BigData Benchmark (§6.3). All of our experi-
ments use Lambda instances with 3GB memory and deploy
Jiffy on 6 m4.16xlarge EC2 instances.

Compared approaches. We compare Caerus with the eager
and lazy scheduling approaches, implemented as a part of
Caerus scheduler. These scheduling approaches correspond
to the two extremes typically used in server-centric analytics
frameworks for task level scheduling — lazy in Spark [30]
and MapReduce [48], and eager in Dryad [32] and MapRe-
duce Online [29]). Note that since our main contribution is a

5We ensure function invocations are warm to avoid cold-start delays.

Lazy Eager NIMBLE
JCT(s) 124 105 107
Cost(s) 10776 15756 11169

Table 1: Comparison of NIMBLE against lazy and eager ap-
proaches for TeraSort on a 100GB dataset (§6.1).

new scheduler for serverless analytics, our evaluation focuses
on comparing scheduling approaches on a common analyt-
ics framework as opposed to comparing different analytics
frameworks. As noted in §5, Caerus can integrate with any
of existing serverless analytics frameworks [8, 11, 12, 14] and
inherit their specific performance optimizations.

Performance metrics. We focus on two main metrics: JCT
and cost of job execution. The former is measured as the time
between job’s first task’s launch time to the last task’s finish
time. For the latter, we measure the aggregated duration across
all tasks in the job as a proxy for cost. We avoid reporting
precise dollar values, since these depend on the cloud provider
and can change with market economics.

6.1 TeraSort
We port the TeraSort algorithm [49] implementation from
Locus [14] to our framework for sorting large datasets. The
algorithm operates in two stages: a partition stage that range
partitions input data to intermediate storage, and a merge stage
that reads these partitions, merges, sorts and writes them out as
output. The sort job in our experiments uses 100 lambdas for
both the map and reduce stage to sort 100GB of data generated
using the Sort benchmark tool [50].

Table 1 compares the results of eager, lazy and NIMBLE
scheduling approaches for the sort job. We observe little data
skew for the TeraSort benchmark during both the partition
and merge stages, and the ideal launch time for merge tasks
identified by NIMBLE scheduling is roughly in the middle of
the execution for partition stage. As such, NIMBLE achieves
1.16× lower job completion time compared to the lazy scheme,
1.41× lower cost than the eager approach. The results validate
our analysis in §4, that NIMBLE scheduling can achieve near-
optimal JCT and cost simultaneously for two stage map-reduce
jobs in practice (< 4% in Table 1). NIMBLE’s slight departure
from optimal is due to delays in launch times introduced by
the analytics framework (i.e., PyWren).

Impact of estimation errors. Caerus’s JCT and cost-
efficiency is gated on being able to estimate parameters like
produce rate (rp) and consume rate (rp) accurately. Since
Caerus’s estimation errors are quite small in practice (< 4%),
we study their impact by introducing errors artificially.

To inject errors in produce rate estimation, we randomly
select map tasks in our TeraSort job with probability pe, and
for each of them, incorrectly estimate the data output rate by
Caerus’s offline estimation as k× the actual value. We de-
note pe as error probability and k as the error ratio. Since the
produce rate rp is the aggregated data output rate across all
map tasks, our stochastic approach effectively injects errors

662 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0.9

1

1.1

1.2

1.3

 1/4 1/2 2 4

N
or

m
. J

C
T

Error ratio

25% 50%
75% 100%

Error probability

(a) JCT

0.9

1

1.1

1.2

1.3

 1/4 1/2 2 4

N
or

m
. E

xe
cu

tio
n

C
os

t

Error ratio

25% 50%
75% 100%

Error probability

(b) Cost
Figure 8: Impact of produce rate estimation errors (§6.1). The re-
sults are normalized against the performance with no injected errors.

0.9

1

1.1

1.2

1.3

 1/4 1/2 2 4

N
or

m
. J

C
T

Error ratio

25% 50%
75% 100%

Error probability

(a) JCT

0.9

1

1.1

1.2

1.3

 1/4 1/2 2 4N
or

m
. E

xe
cu

tio
n

C
os

t

Error ratio

25% 50%
75% 100%

Error probability

(b) Cost
Figure 9: Impact of consume rate estimation errors (§6.1). The re-
sults are normalized against the performance with no injected errors.

to the rp estimate as well. Figure 8 shows the impact of the
injected estimation errors on NIMBLE’s performance, i.e., JCT
and execution cost, with the corresponding metrics normalized
against a run with no injected errors. We observe that NIM-
BLE’s performance is minimally affected — across various
combinations of error probability and error ratio, the JCT and
execution cost is always within ∼ 4% of the run with no in-
jected errors. We attribute this to the runtime profiler, which
tracks the real-time progress of each map task and refines the
produce rate estimation by continuously re-estimating the task
output rates. As such, the runtime profiler is able to correct
the offline estimations in produce rate before launching the
reducers, minimizing the impact of errors.

To study the impact of consume rate estimation errors, we
employ a similar error rate and error ratio driven approach for
reduce tasks. Note that runtime profiler is unable to correct
for estimation errors in this case, since it can re-estimate the
consume rate only during reduce task executions, which is
after the reduce tasks have already been launched. Figure 8
shows the impact of injected errors on NIMBLE performance.
For error ratio > 1 (i.e., estimated rate > actual rate), NIMBLE
incorrectly estimates that the reduce task would finish faster
than it actually does, while for error ratio < 1, it assumes the
opposite. As expected, for the former case, Caerus launches
reduce tasks later than it should, resulting in a longer JCT,
while for the latter scenario, it launches them sooner than
necessary, resulting in increased cost. Figure 9(a) shows that
the normalized JCT increases from 1.07× to 1.12× as error
ratio is increased from 2 to 4, while Figure 9(b) shows that the
cost increases from 1.08× to 1.18× as error ratio increases
from 1/2 to 1/4. Moreover, at higher error probability, the cost
increase is greater since more reducers are launched earlier
than necessary; while the JCT increase is largely unaffected
since it only depends on the slowest task. Note that even with
extreme estimation errors (1

4× and 4×), the increase in cost
or JCT is only 12–18%.

0.5

1

1.5

2

Q1 Q16 Q94 Q95

N
or

m
. J

C
T

Lazy Eager NIMBLE

NIMBLE

(a) JCT

0.5

1

1.5

2

Q1 Q16 Q94 Q95

N
or

m
. E

xe
cu

tio
n

C
os

t Lazy Eager NIMBLE

NIMBLE

(b) Cost
Figure 10: NIMBLE performance for TPC-DS queries (§6.2). Its
JCT is comparable to eager and 1.08–2.2× lower than lazy, while its
cost is comparable to lazy and 1.33–1.57× lower than eager.

6.2 TPC-DS Benchmark
The TPC-DS benchmark [51] has a set of standard decision
support queries based on those used by retail product suppli-
ers. The queries vary widely in terms of compute, storage and
network I/O load variations. We evaluate Caerus on TPC-DS
with scale factor of 1000, which results in a total input size of
1TB across various tables. Similar to Locus [14], we evaluate
four representative queries (in terms of performance character-
istics) from the TPC-DS Benchmark, specifically, queries Q1,
Q16, Q94 and Q95. All selected queries have complex DAGs
comprising six to eight stages, with each query operating over
a subset of the 1TB input — varying from 33GB to 312GB.
Note that some late stages in the selected queries process
much less data compare to early stages (after several join and
groupby operations) — we adjust the degree of parallelism
for these stages based on the amount of data they process.

Figure 10 compares the performance for NIMBLE with the
lazy and eager approaches. The results indicate that Caerus
can efficiently navigate the JCT-cost trade-off for all evaluated
queries. Specifically, NIMBLE achieves JCT comparable to
eager for all the queries, while outperforming lazy by 1.08–
2.2×. For cost, NIMBLE matches the lazy approach while
outperforming eager by 1.33–1.57×.

6.2.1 Diving deeper into NIMBLE benefits
In order to better understand the gains enabled by NIMBLE
scheduling, we zoom in on the performance for Query Q1 of
the TPC-DS benchmark. Figure 11 shows the step-level de-
pendencies for Q1, while Figure 12 shows the breakdown of
execution time across different stages. Note that compute and
network I/O take up most of the execution time, highlighting
potential gains from pipelining. Figure 14 shows the job exe-
cution breakdowns with lazy, eager and NIMBLE scheduling.

Optimal pipelining across stages. We now walk through Q1’s
execution with Caerus (Figure 14(c)). Caerus identifies 7 step
dependencies (i.e., parent-child step pairs) as pipelineable,
shown as red arrows in Figure 11.

While all map stages are launched at time t = 0, (since they
do not have upstream dependencies), Caerus launches tasks
across subsequent stages in a manner that ensures child steps in
the above parent-child step pairs are optimally pipelined with
the parent step, which corresponds to a large portion of the
query execution. This is highlighted in Figure 14(c): when con-

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 663

map1
map2

join1.s1 join1.s2

groupby.s1

join2.s1

groupby.s2

join2.s2

map3

map4

join3.s1 join3.s2 rest

Stage No.

1
2
3
4
5
6
7
8

Figure 11: The step dependency model for Q1.

1
2
3
4
5
6
7
8 start

read
compute
write

St
ag

e
N

o.

time(s)

20 40 600

Figure 12: Time breakdown for Q1.

0.5
0.7
0.9
1.1
1.3
1.5

Q1 Q16 Q94 Q95R
at

io
 o
f e

st
im

at
io

n
to

 m
ea

su
re

m
en

t Produce rate Consume rate Duration

Figure 13: Ratio of estimated & measured pa-
rameters for TPC-DS queries. Error bars de-
note standard deviation across all tasks.

0 50 150 200100

50

100

150

200

250

St
ag

es
 &

 W
or

ke
rs

Time(s)

(a) Lazy

0 50 150 200100

50

100

150

200

250
St

ag
es

 &
 W

or
ke

rs

Time(s)

(b) Eager

0 50 150 200100

50

100

150

200

250

St
ag

es
 &

 W
or

ke
rs

Time(s)

(c) NIMBLE

10 20 30 40 50 60 70
Time(s)

0

0.5

1

N
or

m
. R

at
e

Profiled produce rate
Estimated produce rate
Profiled consume rate
Estimated consume rate

(d) NIMBLE Input Parameters

Figure 14: Diving deeper into NIMBLE benefits for TPC-DS query Q1 (§6.2.1). (a, b, c) show Q1 execution breakdown for lazy, eager, and
NIMBLE, respectively; the black dots inside a task denote pipeline-breakers between steps. The degree of parallelism for Stages 1-8 is: {1, 100,
50, 50, 20, 40, 1, 1}. Note that Stages 1 (red) and 7 (purple) contain only one very short task, making them hard to see. (d) NIMBLE input
parameters as measured by Caerus runtime profiler (solid lines) and as estimated by input estimator (dashed lines) for part of Stage 3 (yellow).

trasted with the lazy approach in Figure 14(a), Caerus enables
a JCT that is 2.2× lower than the lazy approach. Meanwhile,
Caerus also ensures that the tasks are not launched too soon in
order to minimize time spent waiting for input from the parent
step to become available, and therefore, the end-to-end job ex-
ecution cost. As a concrete example, since step groupby1.s1
is much shorter than step join1.s2 and cannot finish before
join1.s2, tasks in the groupby stage are started after tasks in
join1 stage are started, but before they finish execution. Com-
pared with Figure 14(b), this allows name to Caerus achieve a
cost that is 1.56× lower than the lazy approach.

Decreasing duration across stages. Another interesting take-
away from Q1’s execution is that downstream stages in general
process smaller amounts of data than upstream stages (since
operators such as filter and join significantly reduce the data to
downstream stages), and consequently have shorter durations.
As noted in §4.2, NIMBLE scheduling enables both optimal
cost and JCT simultaneously for such DAGs, which is reflected
in Figure 14. Moreover, this observation holds across all of our
evaluated TPC-DS queries, ensuring cost and JCT optimality
with Caerus for all of them.

Accurate profiling & estimation for NIMBLE inputs. Fig-
ure 14(d) shows the normalized produce rate and consume
rate of of step join1.s2 in Stage 3, as profiled by Caerus
runtime profiler and as estimated by Caerus input estimator.
We make two observations: (1) the consume rate is stable as
a function of time, as modeled in §3, and (2) the estimated
values are a close approximation of the actual produce and
consume rates. We find these observations extend to all stages
across query Q1, as well as to all other queries we evaluate
in this section — Figure 13 shows that the average error in

parameter estimations for rp, rc and d∗si is within 4% across
all queries. As we already saw in §6.1, NIMBLE scheduling is
also robust to higher estimation errors.

Data skew. We note that Stage 3 (yellow) experiences data
skew across tasks (Figure 14(a)-14(c)) — our profiling indi-
cates that some tasks process > 1.6× more data than others.
Caerus captures the effect of such data skew in its NIMBLE
scheduling algorithm, and launches tasks in Stage 3 at a time
that still ensures JCT and cost optimality for the job execution.

Fast scheduling decisions. The query Q1 has over 250 tasks
across 8 stages — Caerus schedules and launches each task in
about 400µs (on average). In contrast, when the task launch
request is issued to AWS Lambda, it typically takes an ad-
ditional ∼ 25− 320ms to start the task’s execution [52]. As
such, despite making much more fine-grained (i.e., task-level)
decisions than traditional job schedulers, Caerus is fast enough
to not be the bottleneck in the analytics execution pipeline.

6.3 BigData Benchmark
The Big Data Benchmark [53] is a query suite derived from
production databases. We consider Query 3 (Q3), which is a
join query with four stages, with a step dependency model
similar to the first four stages of TPC-DS benchmark’s Q1
(Figure 11). Our implementation uses shuffle hash join (SHJ),
and efficiently pipelines the join stage with the map stages. Q3
reads in 123GB of input, and can perform joins with three dif-
ferent sizes: 485,312 rows in Q3A; 53,332,015 rows for Q3B;
and 533,287,121 rows for Q3C. This allows us to understand
the effect of join size on NIMBLE scheduling.

Figure 15 compares NIMBLE approach with both the lazy
and eager approaches with different join data sizes (Q3A-Q3C).

664 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0.5

1

1.5

2

Q3A Q3B Q3C

N
or

m
. J
C
T

Lazy Eager NIMBLE

NIMBLE

(a) JCT

0.5

1

1.5

2

Q3A Q3B Q3CN
or

m
. E

xe
cu

tio
n

C
os

t Lazy Eager NIMBLE

NIMBLE

(b) Cost

Figure 15: NIMBLE performance for BigData Benchmark (§6.3).
NIMBLE’s JCT improvement over lazy increases as join size increases
(Q3A→Q3C), while its cost improvement over eager increases as join
size decreases (Q3C→Q3A).

0 20 40 60 80 100
Time(s)

100

200

300

400

St
ag

es
 &

 W
or

ke
rs

(a) Eager

0 20 40 60 80 100
Time(s)

100

200

300

400

St
ag

es
 &

 W
or

ke
rs

(b) NIMBLE

Figure 16: Q3A execution breakdown for (a) eager and (b) NIMBLE.

Interestingly, we observe that NIMBLE’s relative JCT improve-
ment compared to lazy increases from 1.29× to 1.99×, as
join size increases from Q3A to Q3C. Meanwhile, NIMBLE’s
relative cost improvement compared to eager increases from
1.23× to 1.67×, as join size decreases from Q3C to Q3A.

To better understand the differences in cost and JCT im-
provements due join sizes, Figure 16 shows the execution
breakdown for Q3A. As Q3A’s join input data size is small,
the join (yellow) and subsequent groupby (green) stages
are much shorter than the initial map stage (orange). As such,
pipelining these shorter stages with the map stage does not
improve the JCT by much (1.29×) compared to the lazy ap-
proach. However, the eager solution significantly increases
the cost by starting these short tasks very early (Figure 16(a)).
Caerus, on the other hand, improves cost relative to eager by
1.67× by launching them at just the right time (Figure 16(b)).

Figure 17 compares the execution of lazy and Caerus for
Q3C: as the input data size for join is now much larger, the
duration of the join stage and groupby stage is comparable to
the map stage (orange). As such, the eager approach does not
lose as much in terms of cost by launching these tasks early.
However, the lazy solution increases the JCT significantly
by running these relatively longer stages one after the other
(Figure 17(a)). In contrast, Caerus improves JCT by 1.99×
relative to lazy by efficiently pipelining the join and groupby
stage with the map stages (Figure 17(b)).

7 Related Work
We already discussed related work on server-centric and server-
less analytics frameworks in §2.1 and §5.1. We now discuss
prior work related to Caerus in other areas.

Some databases [45, 54–56] and data processing frame-
works [31, 57] support pipelined execution via an iterator

0 50 100 150 200
Time(s)

100

200

300

400

St
ag

es
 &

 W
or

ke
rs

(a) Lazy

0 50 100 150 200
Time(s)

100

200

300

400

St
ag

es
 &

 W
or

ke
rs

(b) NIMBLE

Figure 17: Q3C execution breakdown for (a) lazy and (b) NIMBLE.

model [44]. These approaches focus on maximally pipelin-
ing operators to minimize query completion time. Similar
to these works, we leverages pipelined execution to achieve
JCT-optimality for analytic jobs. In fact, our step dependency
model draws inspiration from iterator models to identify re-
gions of execution that can or cannot be overlapped with other
regions. Unlike prior work, however, our approach also con-
siders cost-optimality, a key concern in serverless analytics.

Caerus’s scheduling problem is also related to the parallel
query scheduling [58–60] in databases. Many of the proposed
algorithms assign CPU and memory resources across operators
considering both pipelinable and non-pipelinable dependen-
cies across them. Unlike Caerus, however, these algorithms
are designed for server-centric deployments and optimize for
the query completion time under limited resource constraints.

Another related problem is Multi-Objective Query Opti-
mization (MOQO), which searches for an query execution
plan with an optimal trade-off between multiple conflicting
cost metrics in databases [61–67]. While MOQO optimizes a
query execution plan to determine its component set of opera-
tions and their orderings, Caerus takes the execution plan as
input and specifically optimizes the task launch times for JCT
and cost, i.e., Caerus approach is complementary to MOQO.

8 Conclusion
We have presented Caerus, a task scheduler for serverless ana-
lytics that uses a new NIMBLE scheduling algorithm. NIMBLE
efficiently pipelines task executions across various stages in
serverless analytics jobs, to ensure cost-optimality and Pareto-
optimality between cost and JCT. We show that for a wide
range of analytics workloads, NIMBLE is often optimal in
both dimensions. This allows Caerus to outperform existing
lazy scheduling approaches by 1.08–2.2× in JCT, and eager
approaches by 1.21–1.57× in cost for these workloads.

Acknowledgments
We thank our anonymous reviewers and shepherd Srinivasan
Seshan for their insightful comments. We also thank Qifan
Pu, Zongheng Yang, Silvery Fu, Chenggang Wu, Danyang
Zhuo, Joe Hellerstein and other members of RISELab for their
constructive feedback. In addition to NSF CISE Expeditions
Award CCF-1730628, this research is supported by gifts from
Amazon Web Services, Ant Group, CapitalOne, Ericsson, Face-
book, Futurewei, Google, Intel, Microsoft, Nvidia, Scotiabank,
Splunk and VMware.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 665

References
[1] AWS Lamda. https://aws.amazon.com/lambda/.

[2] Google Cloud Functions. https://cloud.google.
com/functions.

[3] Azure Functions. https://azure.microsoft.com/
en-us/services/functions.

[4] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti,
Chia-Che Tsai, Anurag Khandelwal, Qifan Pu, Vaishaal
Shankar, Joao Menezes Carreira, Karl Krauth, Neeraja
Yadwadkar, Joseph Gonzalez, Raluca Ada Popa, Ion Sto-
ica, and David A. Patterson. Cloud programming simpli-
fied: A berkeley view on serverless computing. Technical
Report UCB/EECS-2019-3, EECS Department, Univer-
sity of California, Berkeley, 2019.

[5] Joseph M Hellerstein, Jose Faleiro, Joseph E Gonza-
lez, Johann Schleier-Smith, Vikram Sreekanti, Alexey
Tumanov, and Chenggang Wu. Serverless comput-
ing: One step forward, two steps back. arXiv preprint
arXiv:1812.03651, 2018.

[6] Paul Castro, Vatche Ishakian, Vinod Muthusamy, and
Aleksander Slominski. The rise of serverless computing.
Communications of the ACM, 2019.

[7] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett,
Karthikeyan Vasuki Balasubramaniam, William Zeng,
Rahul Bhalerao, Anirudh Sivaraman, George Porter, and
Keith Winstein. Encoding, Fast and Slow: Low-Latency
Video Processing Using Thousands of Tiny Threads. In
NSDI, 2017.

[8] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Sto-
ica, and Benjamin Recht. Occupy the cloud: distributed
computing for the 99%. In SoCC, 2017.

[9] Vaishaal Shankar, Karl Krauth, Kailas Vodrahalli, Qifan
Pu, Benjamin Recht, Ion Stoica, Jonathan Ragan-Kelley,
Eric Jonas, and Shivaram Venkataraman. Serverless lin-
ear algebra. In SoCC, 2020.

[10] Youngbin Kim and Jimmy Lin. Serverless data analytics
with Flint. In CLOUD, 2018.

[11] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li,
Shuvo Chatterjee, Christos Kozyrakis, Matei Zaharia,
and Keith Winstein. From laptop to lambda: Outsourc-
ing everyday jobs to thousands of transient functional
containers. In ATC, 2019.

[12] Matthew Perron, Raul Castro Fernandez, David DeWitt,
and Samuel Madden. Starling: A scalable query engine
on cloud function services. In SIGMOD, 2020.

[13] Qubole Announces Apache Spark on AWS
Lambda. https : / / www . qubole . com / blog /
spark-on-aws-lambda.

[14] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. Shuf-
fling, fast and slow: scalable analytics on serverless in-
frastructure. In NSDI, 2019.

[15] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh
Trivedi, Jonas Pfefferle, and Christos Kozyrakis. Pocket:
Elastic ephemeral storage for serverless analytics. In
OSDI, 2018.

[16] Databricks Serverless: Next Generation Resource Man-
agement for Apache Spark. https://bit.ly/
3cbLe3L.

[17] Amazon. Amazon Aurora Serverless. https://aws.
amazon.com/rds/aurora/serverless.

[18] Azure. Azure SQL Data Warehouse. https:
/ / azure . microsoft . com / en-us / services /
sql-data-warehouse.

[19] Charles Reiss. Understanding Memory Configurations
for In-Memory Analytics. PhD thesis, EECS Department,
University of California, Berkeley, 2016.

[20] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf
Chowdhury, and Kang G. Shin. Efficient Memory Dis-
aggregation with Infiniswap. In NSDI, 2017.

[21] Amazon S3. https://aws.amazon.com/s3.

[22] Introduction to object storage in Azure. https://docs.
microsoft.com/en-us/azure/storage/blobs/
storage-blobs-introduction.

[23] Google Cloud Storage. https://cloud.google.com/
storage/.

[24] Jiffy: A virtual memory abstraction for server-
less architectures. https : / / github . com /
resource-disaggregation/jiffy.

[25] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy
Konwinski, Scott Shenker, and Ion Stoica. Dominant
resource fairness: Fair allocation of multiple resource
types. In NSDI, 2011.

[26] Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kan-
dula, Sriram Rao, and Aditya Akella. Multi-resource
packing for cluster schedulers. SIGCOMM CCR, 2014.

[27] Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya
Akella, and Janardhan Kulkarni. Graphene: Packing and
dependency-aware scheduling for data-parallel clusters.
In OSDI, 2016.

666 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://aws.amazon.com/lambda/
https://cloud.google.com/functions
https://cloud.google.com/functions
https://azure.microsoft.com/en-us/services/functions
https://azure.microsoft.com/en-us/services/functions
https://www.qubole.com/blog/spark-on-aws-lambda
https://www.qubole.com/blog/spark-on-aws-lambda
https://bit.ly/3cbLe3L
https://bit.ly/3cbLe3L
https://aws.amazon.com/rds/aurora/serverless
https://aws.amazon.com/rds/aurora/serverless
https://azure.microsoft.com/en-us/services/sql-data-warehouse
https://azure.microsoft.com/en-us/services/sql-data-warehouse
https://azure.microsoft.com/en-us/services/sql-data-warehouse
https://aws.amazon.com/s3
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://github.com/resource-disaggregation/jiffy
https://github.com/resource-disaggregation/jiffy

[28] Robert Grandl, Mosharaf Chowdhury, Aditya Akella,
and Ganesh Ananthanarayanan. Altruistic scheduling in
multi-resource clusters. In OSDI, 2016.

[29] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M.
Hellerstein, Khaled Elmeleegy, and Russell Sears. Mapre-
duce online. In NSDI, 2010.

[30] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin,
Scott Shenker, and Ion Stoica. Spark: Cluster Computing
with Working Sets. In HotCloud, 2010.

[31] Spark SQL. https://spark.apache.org/sql/.

[32] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell,
and Dennis Fetterly. Dryad: distributed data-parallel
programs from sequential building blocks. In SIGOPS,
2007.

[33] Apache Hive. https://hive.apache.org.

[34] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Sim-
plified Data Processing on Large Clusters. Communica-
tions of the ACM, 2008.

[35] Cloudera Impala. http://www.cloudera.com/
content/cloudera/en/products-and-services/
cdh/impala.html.

[36] Scheller Brandon. Best practices for resizing and auto-
matic scaling in Amazon EMR. https://amzn.to/
2ZJYY0D, 2018.

[37] Hadoop Distributed File System. https://hadoop.
apache.org/docs/r1.2.1/hdfs_design.html.

[38] AWS Lambda pricing. https://aws.amazon.com/
lambda/pricing/.

[39] Amazon S3 pricing. https://aws.amazon.com/s3/
pricing/.

[40] Ganesh Ananthanarayanan, Srikanth Kandula, Albert G
Greenberg, Ion Stoica, Yi Lu, Bikas Saha, and Edward
Harris. Reining in the outliers in map-reduce clusters
using mantri. In OSDI, 2010.

[41] YongChul Kwon, Magdalena Balazinska, Bill Howe, and
Jerome Rolia. A study of skew in mapreduce applica-
tions. Open Cirrus Summit, 2011.

[42] YongChul Kwon, Magdalena Balazinska, Bill Howe, and
Jerome Rolia. Skewtune: mitigating skew in mapreduce
applications. In SIGMOD, 2012.

[43] Cliff Engle, Antonio Lupher, Reynold Xin, Matei Za-
haria, Michael J Franklin, Scott Shenker, and Ion Stoica.
Shark: Fast Data Analysis Using Coarse-grained Dis-
tributed Memory. In SIGMOD, 2012.

[44] Goetz Graefe. Volcano, an extensible and parallel query
evaluation system; cu-cs-481-90. 1990.

[45] Thomas Neumann. Efficiently compiling efficient query
plans for modern hardware. 2011.

[46] Mosharaf Chowdhury, Zhenhua Liu, Ali Ghodsi, and Ion
Stoica. Hug: Multi-resource fairness for correlated and
elastic demands. In NSDI, 2016.

[47] Sameer Agarwal, Srikanth Kandula, Nico Bruno, Ming-
Chuan Wu, Ion Stoica, and Jingren Zhou. Reoptimizing
data parallel computing. In NSDI, 2012.

[48] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simpli-
fied data processing on large clusters. Communications
of the ACM, 2008.

[49] Owen O’Malley. Terabyte sort on apache hadoop. 2008.

[50] gensort Data Generator. http://www.ordinal.com/
gensort.html.

[51] TPC-DS. http://www.tpc.org/tpcds/.

[52] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ris-
tenpart, and Michael Swift. Peeking behind the curtains
of serverless platforms. In ATC, 2018.

[53] AMPLab. The BigData Benchmark. https://amplab.
cs.berkeley.edu/benchmark/, 2018.

[54] Luc Bouganim, Daniela Florescu, and Patrick Valduriez.
Dynamic load balancing in hierarchical parallel database
systems. 1996.

[55] Li Wang, Minqi Zhou, Zhenjie Zhang, Yin Yang, Aoy-
ing Zhou, and Dina Bitton. Elastic pipelining in an in-
memory database cluster. In SIGMOD, 2016.

[56] Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas
Neumann. Morsel-driven parallelism: a numa-aware
query evaluation framework for the many-core age. In
SIGMOD, 2014.

[57] Yuan Yu Michael Isard Dennis Fetterly, Mihai Budiu,
Úlfar Erlingsson, and Pradeep Kumar Gunda Jon Currey.
Dryadlinq: A system for general-purpose distributed data-
parallel computing using a high-level language. Proc.
LSDS-IR, 2009.

[58] Minos N Garofalakis and Yannis E Ioannidis. Multi-
dimensional resource scheduling for parallel queries.
ACM SIGMOD Record, 1996.

[59] Chandra Chekuri, Waqar Hasan, and Rajeev Motwani.
Scheduling problems in parallel query optimization. In
SIGACT-SIGMOD-SIGART, 1995.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 667

https://spark.apache.org/sql/
https://hive.apache.org
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html
https://amzn.to/2ZJYY0D
https://amzn.to/2ZJYY0D
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/s3/pricing/
http://www.ordinal.com/gensort.html
http://www.ordinal.com/gensort.html
http://www.tpc.org/tpcds/
https://amplab.cs.berkeley.edu/benchmark/
https://amplab.cs.berkeley.edu/benchmark/

ra
te

time

the actual consume rate 𝑟
 of eager solution E

the actual consume rate 𝑟
 of an alternative solution F

Launch time of E

Launch time of F 𝑡′: last time that F consumes at
a higher rate (before E finish)

𝑟

Figure 18: [Example for Lemma A.1] The actual consume rate of (i)
the eager approach E; and (ii) an alternate approach F with a later
launch time.
[60] Minos N Garofalakis and Yannis E Ioannidis. Parallel

query scheduling and optimization with time-and space-
shared resources. SORT, 1997.

[61] Immanuel Trummer and Christoph Koch. Approxima-
tion schemes for many-objective query optimization. In
SIGMOD, 2014.

[62] Immanuel Trummer and Christoph Koch. An incremental
anytime algorithm for multi-objective query optimiza-
tion. In SIGMOD, 2015.

[63] Sumit Ganguly, Waqar Hasan, and Ravi Krishnamurthy.
Query optimization for parallel execution. In SIGMOD,
1992.

[64] Sameer Agarwal, Anand P Iyer, Aurojit Panda, Samuel
Madden, Barzan Mozafari, and Ion Stoica. Blink and it’s
done: interactive queries on very large data. 2012.

[65] Immanuel Trummer and Christoph Koch. Multi-
objective parametric query optimization. ACM SIGMOD
Record, 2016.

[66] Christos H Papadimitriou and Mihalis Yannakakis. Mul-
tiobjective query optimization. In SIGMOD-SIGACT-
SIGART, 2001.

[67] Amol Deshpande and Lisa Hellerstein. Parallel pipelined
filter ordering with precedence constraints. TALG, 2012.

A Theoretical Proofs
Lemma A.1 The eager approach always optimizes the finish
time for a reduce task.
Proof Figure 18 shows an example of the actual consume rate
rac(t) for r.s1 under two approaches: the eager solution E

and an alternate approach F with a later launch time. We see
that before E finishes, there may exist some time t such that
rac(t) of F is greater than rac(t) of E. Based on Equation 1,
we know that this is because E has processed all its inputs by t
(S(t) = 0 for E), but F has not (S(t) = 1 for F) as it is launched
later. Denote the last such time point before E finishes as t ′,
we have: (1) by time t ′, E has processed all data generated
before t ′; (2) after time t ′, rac(t) of E is no less than F until
it finishes. The combination of these two observations shows
that E always has an earlier finish time for r.s1 than F. Since
T ∗e = t∗e,s1+d∗s2, E also ensures optimal task finish time. �

Proof of Theorem 4.2 :
Theorem 4.2 For a task in an analytics job with an arbitrary
execution DAG, given the execution (produce rate) of all its
parent steps, we can always achieve both optimal execution
duration and finish time by launching it at T ∗s = T ∗e −D∗,
where T ∗e is the optimal finish time and D∗ is the optimal
duration computed using Steps 1 and 2 described in §4.2.1.
Proof We prove Theorem 4.2 by mathematical induction on
the number of steps of the task.
Base case: We first show that Theorem 4.2 holds for a task
with only one step. In this case, the problem reduces to the
single parent-child step case for two-stage map-reduce jobs as
in Theorem 4.1, which we have already shown to hold.
Inductive step: We now show that for any n > 1, if Theo-
rem 4.2 holds for tasks with n steps, it also holds for tasks
with n+1 steps. Consider a task with n+1 steps. For the first
n steps, we denote the optimal finish time as T ∗e (n), and cost
as D∗(n). Since Theorem 4.2 holds for any task with n steps,
T ∗e (n) and D∗(n) can be achieved simultaneously by launch-
ing the (n+1)-step task at T ∗s (n) = T ∗e (n)−D∗(n). Based on
Equation 2 and the definition of the optimal task duration (Step
1 in §4.2.1), we have:

T ∗e (n+1) = max(t ′e,sn+1,T
∗

s (n)+d∗sn+1)

D∗(n+1) = D∗(n)+d∗sn+1
(3)

Based on Equation 3, the launch time calculated from Theorem
4.2 for the (n+1)-step task is

T ∗s (n+1) = T ∗e (n+1)−D∗(n+1)
≥ (T ∗s (n)+d∗sn+1)− (D∗(n)+d∗sn+1)

= T ∗e (n)−D∗(n)

= T ∗s (n)

(4)

Note that if a step j starts at time t1 and executes at full load
(i.e., it will never stall for data to become available), then it
must also be able to execute at full load if it starts at any time
t2 ≥ t1. Since we have T ∗s (n+1)≥ T ∗s (n) from Equation 4, if
we launch the task at T ∗s (n+ 1), we can always execute the
first n steps at full load (i.e., with optimal duration D∗(n)). As
such, with launch time T ∗s (n+ 1), the corresponding finish
time of the first n steps is T ∗s (n+1)+D∗(n), which is also the
start time of the last step sn+1. Based on Equation 3 we have:

Start time of step sn+1 = T ∗s (n+1)+D∗(n)

= (T ∗e (n+1)−D∗(n+1))+D∗(n)

= T ∗e (n+1)−d∗sn+1

= max(t ′e,sn+1,T
∗

s (n)+d∗sn+1)−d∗sn+1

≥ t ′e,sn+1−d∗sn+1
(5)

Equation 5 indicates that if we launch the task at T ∗s (n+1), the
start time of the step sn+1 is no less than t ′e,sn+1−d∗sn+1. Note

668 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

that t ′e,sn+1 is the optimal finish time of step sn+1 calculated
only based on its parent. Just as in the proof of Theorem 4.1,
which covers the single parent-child step pair case, we can
then show that the step sn+1 must execute at full rate if it is
launched at t ′e,sn+1−d∗sn+1.

Taken together, if we launch the task at T ∗s (n+1), all n+1
steps can execute at full load, which indicates it achieves the

optimal duration D∗(n+1). Moreover, recall that T ∗s (n+1) =
T ∗e (n+ 1)−D∗(n+ 1). This means that if the task starts at
T ∗s (n+ 1) and has a duration of D∗(n+ 1), it must finish at
T ∗e (n+1). As such, we can achieve both T ∗e (n+1) and D∗(n+
1) by launching the task at T ∗s (n+1).
Conclusion: Since both the base case and the inductive step
hold, Theorem 4.2 holds by mathematical induction. �

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 669

	Introduction
	Motivation
	Background
	Serverless Scheduling: A New Problem
	Opportunities & Challenges

	Step Dependency Model
	Nimble Scheduling
	Nimble for Two-stage Map-Reduce
	Nimble for General Analytics
	Optimal launch time for individual tasks
	Optimal schedule for the entire job

	Design Details
	Caerus System
	Caerus Implementation

	Evaluation
	TeraSort
	TPC-DS Benchmark
	Diving deeper into Nimble benefits

	BigData Benchmark

	Related Work
	Conclusion
	Theoretical Proofs

